Research on the practice of massaging the head of a baby with hot water and ointments in Ghana. By Dzamesi Yael (Ph.D. in Science Education)
[4] Thomas R., Sanders S., Doust J., Beller E., Glasziou P. (2015) Prevalence of Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics 135(4): e994–e1001. https://pediatrics.aappublications.org/content/135/4/e994
[5] Visser, N. S., Danielson, M. L., Bitsko, R.H., Holbrook, J. R., Kogan, M. D., Ghandour, R. M., Perou, R., Blumberg S. J. (2014) Trends in the parent-report of health care provider diagnosed and medicated ADHD: United States, 2003—2011. J Am Acad Child Adolesc Psychiatry 53(1): 34–46. https://pubmed.ncbi.nlm.nih.gov/24342384/
[6] Timyan J. (1988) Cultural aspects of psychosocial development: An examination of West African childrearing Practices. A report prepared by The Consultative Group on Early Childhood Care and Development for the Regional UNICEF Workshop: Toward a Strategy for Enhancing Early Childhood
Development in the West and Central Africa Region. http://www.ecdgroup.com/download/aa1capda.pdf
[7] Akua F. Abrah (2012) Medical Pluralism and Contested Authorities of Knowledge: Asram and the case of New-born Illness in Ghana. An Honors Thesis submitted to Anthropology Tufts University, USA.
http://ir.knust.edu.gh/bitstream/123456789/8546/1/NTIAKOH%20FINAL%20THESIS.pdf
[8] Dzamesi, Y. E. (2006) The Perception of Ghanaian 9th Grade Pupils of Every Day Life Activities that are Related to Natural Phenomena and Contradict Scientific Knowledge. Thesis submitted to the Senate of the Hebrew University, Israel.
[9] SeniorHealth365 https://www.seniorhealth365.com/lifestyle/bath-water-temperature-safety-for-the-elderly/
[10] Kiyatkina A. E., Sharma H. S. (2009) Permeability of the blood-brain barrier depends on brain temperature. Neuroscience 161(3): 926–939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694729/
[11] Sharma H. S., Johanson C. E. (2007) Blood-cerebrospinal fluid barrier in hyperthermia. Prog Brain Res 162:459-78.
[12] Sharma H. S., Westman J., Nyberg F. (1998) Pathophysiology of brain edema and cell changes following hyperthermic brain injury, Brain functions in hot environment. Prog Brain Res 115: 351–412. https://pubmed.ncbi.nlm.nih.gov/17645933/
[13] Sharma H. S., Cervós-Navarro J. (1990) Brain oedema and cellular changes induced by acute heat stress in young rats. Acta Neurochir Suppl (Wien) 51:383-6. https://pubmed.ncbi.nlm.nih.gov/2089947/
[14] Sharma H. S., Westman J., Nyberg F., Zimmer C., Cervo´s-Navarro J., Dey P.K. (1994) Selective vulnerability of rat hippocampus in heat stress. In: Milton A. S., ed., Temperature Regulation. Advances in Pharmacological Science, Basel: Birkhauser, 267–72. https://link.springer.com/book/10.1007%2F978-3-0348-8491-4
[15] Cervo´s-Navarro J., Sharma H. S., Westman J., Bongcam-Rudloff E. (1998) Glial reactions in the central nervous system following heat stress. Prog Brain Res 115: 241–74. https://pubmed.ncbi.nlm.nih.gov/9632939/
[16] Sharma H. S. (1999) Pathophysiology of blood–brain barrier, brain edema and cell injury following hyperthermia: new role of heat shock protein, nitric oxide and carbon monoxide. An experimental study in the rat using light and electron microscopy. Acta Universitatis Upsaliensis 830: 1–94. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A162207&dswid=mainwindow
[17] Esplugues J. V. (2002) NO as a signaling molecule in the nervous system. Br J Pharmacol 135(5): 1079–1095. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573233/
[18] Godlewski A., Wygladalska-Jernas H., Szczech J. (1986) Effect of hyperthermia on morphology and histochemistry of spinal cord in the rat Folia Histochem Cytobiol. 24(1):53-63. https://pubmed.ncbi.nlm.nih.gov/3013703/
[19] Driscoll B. F., Kramer A. J., Kies M. W. (1974) Myelin basic protein: Location of multiple independent antigenic regions. Science 184: 73–5. https://pubmed.ncbi.nlm.nih.gov/4131282/
[20] Sharma H. S., Kretzschmar R., Cervós-Navarro J., Ermisch A., Rühle H. J., Dey P. K. (1992) Age-related pathophysiology of the blood-brain barrier in heat stress. Prog Brain Res 91:189-96. https://pubmed.ncbi.nlm.nih.gov/1410403/
[21] Bryan K., Bryan d. F. (2009) Development of the Child’s Brain and Behavior in: Reynolds C. and Fletcher J. E. (Eds.) Handbook of child neuropsychology, chapter 2. https://www.springer.com/gp/book/9780387707082
[22] Stiles J., Jernigan T. L. (2010) The Basics of Brain Development. Neuropsychol Rev 20(4): 327–348. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989000/
[23] Cayre M., Canoll P., Goldman J. E. (2009) Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol 88(1): 41–63. https://pubmed.ncbi.nlm.nih.gov/19428961/
[24] Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182. https://pubmed.ncbi.nlm.nih.gov/19020011/
[25] Gathercole S. E., Pickering S. J., Ambridge B., Wearing H. (2004) The structure of working memory from 4 to 15 years of age. Developmental Psychology 40 (2): 177–190. https://pubmed.ncbi.nlm.nih.gov/14979759/
[26] Neu D., Kajosch H., Peigneux P., Verbanck P., Linkowski P., Le Bon O. (2011) Cognitive impairment in fatigue and sleepiness associated conditions. Psychiatry Res 189(1): 128-34. https://pubmed.ncbi.nlm.nih.gov/21196050/
[27] Education System Profiles, Education in Ghana (2019) WENR World Education News + Reviews. https://wenr.wes.org/2019/04/education-in-ghana
[28] Schweigert W. A. (1994) Research Methods and Statistics for Psychology. Brooks/Cole Publishing Company, California.
[29] Sahana K. S., Rajiv D. (2012) Camphor Poisoning. Indian Pediatr 49: 841-842. https://www.indianpediatrics.net/oct2012/oct-841-842.htm
[30] Martin D., Valdez J., Boren J., Mayersohn M. J. (2004) Dermal absorption of camphor, menthol, and methyl salicylate in humans. Clin Pharmacol 44(10):1151-7. https://pubmed.ncbi.nlm.nih.gov/15342616/
[31] Crowleyand N. A., Kash T. L. (2015) Kappa opioid receptor signaling in the brain: Circuitry and implications for treatment. Prog. Neuropsychopharmacol Biol Psychiatry 62: 51–60. https://pubmed.ncbi.nlm.nih.gov/25592680/
[32] Haeseler G., Maue D., Grosskreutz J., Bufler J., Nentwig B., Piepenbrock S., Dengler, R., Leuwer M. (2002) Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur J Anaesthes 19 (8): 571–579. https://pubmed.ncbi.nlm.nih.gov/12200946/
[33] Bastaab D., Goetzeb R., Ernsta A. (2008) Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex. Hearing Research 240 (1-2): 42-51. https://pubmed.ncbi.nlm.nih.gov/18372130/
[34] European Medicines Agency, Science, Medicines, Health. Committee on Herbal Medicinal Products (HMPC) (2012) Assessment report on Eucalyptus globulus Labill. Folium EMA/HMPC/892615/2011. https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-eucalyptus-globulus-labill-folium_en.pdf
[35] Grasso P., Simpsori B. J., Butler M., Dally S., Pointet M., Sarginson N. J., Skaarie O., Trettin K., Eyres A. R.(1986) Effects of petroleum hydrocarbons on the nervous system. CONCAWE, report no. 86/51.
https://www.concawe.eu/wp-content/uploads/2017/01/rpt_86-51ocr-2004-01279-01-e.pdf
[36] Petry D., Bury R., Fautz M., Hauser B., Huber A., Markowetz S., Mishra K., Rettinger W., Schuh T., and Teicher T. (2017) Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications. Toxicology Letters 280: 70-78.https://www.researchgate.net/publication/318931230_Review_of_data_on_the_dermal_penetration_of_mineral_oils_and_waxes_used_in_cosmetic_applications
[37] Kerosene (2018) In: TOXNET Toxicology Data Network USA Department of Health and Human Service. National Library of Medicine, National Institute of Health. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+632
[38] The UK Food Guide (2003 – 2018). http://www.ukfoodguide.net/e104.htm
[39] Screening Assessment for the Challenge 2-Naphthalenol, 1-[[4-(phenylazo) phenyl]azo]-Solvent Red 23, (2011) Environment and Climate change, Canada. Health, Canada. https://www.canada.ca/en/health-canada/services/chemical-substances/challenge/batch-6/solvent-red-23.html
[40] Sharma H. S., Westman J., Cervo’s-Navarro J., Dey P. K., Nyberg F. (1997) Opioid receptor antagonists attenuate heat stress-induced reduction in cerebral blood flow, increased blood-brain barrier permeability, vasogenic edema and cell changes in the rat. Ann NY Acad Sci 813:559-571. https://pubmed.ncbi.nlm.nih.gov/9100935/
[41] Sharma H. S. and Hoopes P. J. (2003) Hyperthermia induced pathophysiology of the central nervous system, International Journal of Hyperthermia, 19(3): 325-354, https://pubmed.ncbi.nlm.nih.gov/12745974/
[42] Megarbane B., Resiere D., Shabafrouz K., Duthoit G., Delahaye A., Delerme S., and Baud F. (2003) Descriptive study of the patients admitted to an intensive care unit during the heat wave of August 2003 in France. Presse Med 8: 32(36): 1690-8.
https://pubmed.ncbi.nlm.nih.gov/14663397/
[43] International Association for the Study of Pain (IASP) (1979) Pain 6(3): 247 8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902252/
[43a] Aydede M. (2017) Defending the IASP Definition of Pain. The Monist 100(4).
https://academic.oup.com/monist/article-abstract/100/4/439/4102129?redirectedFrom=fulltext
[44] Bradbury M. W. B. (1992) Physiology and pharmacology of the blood-brain barrier. Hand- book of Experimental Pharmacology Vol. 103. Springer, Berlin Heidelberg New York Tokyo Dawson. https://www.springer.com/gp/book/9783642768965
[45] Pallais J. C. , Schlozman S. C., Puig A., Purcell J. J., Stern T. A. (2011) Fainting, Swooning, and Syncope. Prim Care Companion CNS Disord 13(4): PCC.11f01187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219519/
[46] Frankel H. M., Ellis J. P. Jr, Cain S. M. (1963) Development of tissue hypoxia during progressive hyperthermia in dogs. Am J Physiol 205: 733–7. https://pubmed.ncbi.nlm.nih.gov/14060814/
[47] Baumann N., Hauw J. J. (1979) Review on the properties of glial cells of the central nervous system. Sem Hop 55(35-36): 1653-61. https://pubmed.ncbi.nlm.nih.gov/231841/
[48] Alvarez J. I., Katayama T., Prat A. (2013) Glial influence on the blood brain barrier. Glia 61(12): 1939–1958. https://pubmed.ncbi.nlm.nih.gov/24123158/
[49] Chiarugi A, Moskowitz M. A. (2002) Cell biology, PARP-1--a perpetrator of apoptotic cell death? Science 297(5579): 200–1. https://pubmed.ncbi.nlm.nih.gov/12114611/
[50] Riccomagno M. M., Kolodkin A. L. (2015) Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol 13(31): 779–805. https://pubmed.ncbi.nlm.nih.gov/26436703/
[51] Chechik G., Meilijson I., Ruppin E. (1998) Synaptic pruning in development: a computational account. Neural computation 10(7): 1759–77. https://pubmed.ncbi.nlm.nih.gov/9744896/
[52] Tau G. Z., Peterson B. S. ( 2010) Normal Development of Brain Circuits. Neuropsychopharmacology 35(1): 147–168. https://pubmed.ncbi.nlm.nih.gov/19794405/
[53] Citri A, Malenka R. (2007) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41. https://www.nature.com/articles/1301559
[54] Cooke S. F., Bliss T. V. (2006) Plasticity in the human central nervous system. Brai. 129 (7): 1659–73. https://academic.oup.com/brain/article/129/7/1659/300527
[55] Cowan N. (2008) What are the differences between long-term, short-term, and working memory? Prog Brain Res 169: 323–338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657600/
[56] Diamond A. (2013) Executive functions. Annu Rev Psychol 64: 135–168. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084861/
[57] Cowan N. (2014) Working Memory Underpins Cognitive Development, Learning, and Education. Educ Psychol Rev 26(2): 197–223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207727/
[58] Vogel E. K., McCollough A. W., Machizawa M. G. (2005) Neural measures reveal individual differences in controlling access to working memory. Nature 438: 500-3. https://pubmed.ncbi.nlm.nih.gov/16306992/
[59] Ericsson K. A., Kintsch W. (1995) Long-term working memory. Psychol Rev 102(2):211-45. https://pubmed.ncbi.nlm.nih.gov/7740089/
[60] Laroche S., Davis S., Jay T. M. (2000) Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 10: 438–446. https://pubmed.ncbi.nlm.nih.gov/10985283/
[61] Na D. G., Ryu J. W., Byun H. S., Choi D. S., Lee E. J., Chung W. I., Cho J. M. and Han B. K. (2000) Functional MR imaging of working memory in the human brain. Korean J Radiol 1(1): 19–24. https://pubmed.ncbi.nlm.nih.gov/11752924/
[62] Edwards M. J., Saunders R. D., Shiota K. (2003) Effects of heat on embryos and foetuses. Int J Hyperthermia19(3):295–324. https://pubmed.ncbi.nlm.nih.gov/12745973/
[63] Shiota K., Kayamura T. (1989) Effects of prenatal heat stress on postnatal growth, behaviour and learning capacity in mice. Biol Neonate 56: 6–14. https://www.karger.com/Article/Abstract/242981
[64] Hartley W. J., Alexander G., Edwards M. J. (1974) Brain cavitation and micrencephaly in lambs exposed to prenatal hyperthermia. Teratology 9: 299–303. https://pubmed.ncbi.nlm.nih.gov/4832060/
[65] Watanabe I., Okada S. (1967) Effects of temperature on growth rate of cultured mammalian cells (L5178y). The Journal of Cell Biology 3: 309-323. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107254/
[66] Lepock, JR, Frey, HE, Rodahl, AM, and Kruuv, J. (1988) Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. J. Cell. Physiol. 137: 14–24. https://pubmed.ncbi.nlm.nih.gov/3170654/
[67] Khan V. R., Brown I. R. (2002) The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones 7(1): 73–90. https://pubmed.ncbi.nlm.nih.gov/11892990/
[68] Edwards M. J., Wanner R. A., Mulley R. C. (1976) Growth and development of the brain in normal and heat-retarded guinea pigs. Neuropathol Appl Neurobiol 2: 439–50. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2990.1976.tb00518.x
[69] Upfold J., Smith M. S. R., Edwards M. J. (1987) Maternal hyperthermia and its effects on embryonic and foetal brain development. In: Hales J. R. S., Richards D. A. B. (eds.) Heat Stress, Physical Exertion and Environment. New York: Excerpta Medica: 303–11.
[70] Elston G. N. (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex. 13(11): 1124–38. https://pubmed.ncbi.nlm.nih.gov/14576205/
[71] Kandel E. R., Schwartz J. H., Sanes J. R. (2000) Sensory experience and the fine-tuning of synaptic connections. In: Kandel E. R., Schwartz J.H., Jessell T. M. (eds.) Principles of Neural Science, 4th edition, Appleton & Lange: Stamford, Conn: 1115–1130.
[72] Alm P., Sharma H. S., Hedlund S., Sjöquist P.O., Westman J. (1998) Nitric oxide in the pathophysiology of hyperthermic brain injury. Influence of a new anti-oxidant compound H-290/51. A pharmacological study using immunohistochemistry in the rat. Amino Acids 14(1-3): 95-103. https://pubmed.ncbi.nlm.nih.gov/9871448/
[73] Steinert J. R., Chernova T., Forsythe I. D. (2010) Nitric oxide signalling in brain function, dysfunction, and dementia. The Neuroscientist 16(4): 435 –452. https://pubmed.ncbi.nlm.nih.gov/20817920/
[74] Lobo V., Patil A., Phatak A., Chandra N. (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4(8): 118–126. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249911/
[75] Dawsonac V. L., Dawsonac T. M. (1996) Nitric oxide neurotoxicity. Journal of Chemical Neuroanatomy 10(3–4): 179-190.
https://www.sciencedirect.com/science/article/abs/pii/0891061896001482
[76] Dey S., Dey P. K., Sharma H. S. (1993) Regional metabolism of 5-hydroxytryptamine in brain under acute and chronic heat stress. Indian J Physiol Pharmacol 37(1): 8-12. https://pubmed.ncbi.nlm.nih.gov/8449553/
[77] Trakhtenberg E. F., Goldberg J. L. (2012) The role of serotonin in axon and dendrite growth. Int Rev Neurobiol 106: 105–126.
https://pubmed.ncbi.nlm.nih.gov/23211461/
[78] Gaspar P., Cases O., Maroteaux L. (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4: 1002–1012. https://pubmed.ncbi.nlm.nih.gov/14618156/
[79] Daubert E. A., Condron B. G. (2010) Serotonin: A regulator of neuronal morphology and circuitry. Trends Neurosci 33:424–434. https://pubmed.ncbi.nlm.nih.gov/20561690/
[80] Sodhi M. S. K., Sanders-Bush E. (2004) Serotonin and brain development. Int Rev Neurobiol 59:111–174.
https://pubmed.ncbi.nlm.nih.gov/15006487/
[81] Valiente M., Marin O. (2010) Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20(1): 68-78.
https://pubmed.ncbi.nlm.nih.gov/20053546/
[82] Riccio O., Jacobshagen M., Golding B., Vutskits L., Jabaudon D., Hornung J. P., Dayer A. G. (2012) Excess of serotonin affects neocortical pyramidal neuron migration. Transl Psychiatry 2(3): e95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309486
[83] Teissier A., Soiza-Reilly M., Gaspar P. (2017) Refining the role of 5-HT in postnatal development of brain circuits. Front Cell Neurosci 11:139. https://pubmed.ncbi.nlm.nih.gov/28588453/
[84] Zgraggen E., Boitard M., Roman I., Kanemitsu M., Potter G., Salmon P., Vutskits L., Dayer A. G., Kiss J. Z. (2012) Early postnatal migration and development of layer II pyramidal neurons in the rodent cingulate/retrosplenial cortex . Cerebral Cortex 22(1): 144–157. https://academic.oup.com/cercor/article/22/1/144/366080?login=true
[85] Miceli S., Negwer M., van Eijs F., Kalkhoven C., van Lierop I., Homberg J., Schubert D. (2013) High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV. Front Cell Neurosci 7: 88. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675331/
[86] Homberg J.R., Schubert D., Gaspar P. (2010) New perspectives on the neurodevelopmental effects of SSRIs. Trends Pharmacol Sci 31(2):60–65. https://pubmed.ncbi.nlm.nih.gov/19963284/
[87] Videman M., Tokariev A., Saikkonen H., Stjerna S., Heiskala H., Mantere O., Vanhatalo S. (2017) Newborn brain function is affected by fetal exposure to maternal serotonin reuptake inhibitors. Cerebral Cortex 27: 3208–3216. https://pubmed.ncbi.nlm.nih.gov/27269962/
[88] Kennison M. S. (2013) Introduction to language development. Los Angeles: SAGE Publication Inc USA.
https://www.researchgate.net/publication/234038955_Introduction_to_Language_Development
[89] Blanco-Elorrieta E., Pylkkanen L. (2017) Bilingual language switching in the lab vs. in the wild: The Spatio-temporal dynamics of adaptive language control. Journal of Neuroscience 37 (37): 9022-9036. https://pubmed.ncbi.nlm.nih.gov/28821648/
[90] Brownsett L.S., Wise, R. J. (2009) The contribution of the parietal lobes to speaking and writing. Cerebral Cortex 20 (3): 517–523. https://academic.oup.com/cercor/article/20/3/517/416381
[91] Eysenck, M. W., Keane, M. T. (2000) Cognitive Psychology: A Student's Handbook (4th ed.) New York, NY, US: Psychology Press.
[92] Gazerani P., Arendt-Nielsen L. (2011) Cutaneous vasomotor reactions in response to controlled heat applied on various body regions of healthy humans: evaluation of time course and application parameters. Int J Physiol Pathophysiol Pharmacol 3:202–209. https://pubmed.ncbi.nlm.nih.gov/21941611/
[93] Iwata H., Okamoto H., Koh S. (1975) Effects of various drugs on serum free and total tryptophan levels and brain tryptophan metabolism in rats. Japan. J Pharntacol 25: 303-310. https://pubmed.ncbi.nlm.nih.gov/127058/
[94] Oz M., El Nebrisi G. E., Yang KH. S., Howarth F. C., Al Kury L. T. (2017) Cellular and molecular targets of menthol actions. Front Pharmacol 8: 472. https://www.frontiersin.org/articles/10.3389/fphar.2017.00472/full
[95] Haydar T. F., Wang F., Schwartz M. L., Rakic P. (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci 20 (15): 5764–74. https://pubmed.ncbi.nlm.nih.gov/10908617/
[96] Barbin G., Pollard H., Gaïarsa J. L., Ben-Ari Y. (1993) Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons. Neurosci Lett 152 (1–2): 150–154. https://www.sciencedirect.com/science/article/abs/pii/030439409390505F
[97] Maric D., Liu Q.Y., Maric I., Chaudry S., Chang YH, Smith S.V., Sieghart W., Fritschy J.M., Barker J. L. (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl− channels. J Neurosci 21 (7): 2343–60. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6762405/
[98] Pan R., Tian Y., Gao R., Li H., Zhao X., Barrett J. E., Hu H. (2012) Central mechanisms of menthol-induced analgesia. Journal of Pharmacology and Experimental Therapeutics 343 (3):661-672. https://jpet.aspetjournals.org/content/343/3/661.short
[99] Porcher C., Hatchett C., Longbottom R. E., McAinch K., Sihra T. S., Moss S. J., Thomson A. M., Jovanovic J. N. (2011) Positive feedback regulation between γ-amino butyric Acid type A(GABAA) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J Biol Chem 286(24): 21667–21677. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122223/
[100] Huang E. J., Reichardt L. F. (2001) Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience 24: 677–736. https://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.24.1.677
[101] Henneberger C., Jüttner R., Rothe T., Grantyn R. (2002) Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J. Neurophysiol 88 (2): 595–603. https://pubmed.ncbi.nlm.nih.gov/12163512/
[102] Taha H., Elsheshtawy, E. Mohamed S. I., Al-Azazzy O., Elsayed M., Ibrahim S. AS. (2017) Correlates of brain derived neurotrophic factor in children with attention deficit hyperactivity disorder: A case-control study. Egyptian Journal of Psychiatry; 38 (3); 159- 163. https://www.researchgate.net/publication/320661616_Correlates_of_brain_derived_neurotrophic_factor_in_children_with_attention_deficit_hyperactivity_disorder_A_case-control_study
[103] Yeom C. W., Park Y. J., Choi S. W., Bhang S. Y. (2016) Association of peripheral BDNF level with cognition, attention and behavior in preschool children. Child and Adolescent Psychiatry and Mental Health 10: 10.https://www.researchgate.net/publication/301903783_Association_of_peripheral_BDNF_level_with_cognition_attention_and_behavior_in_preschool_children
[104] Maria-Jose M. B., Richardson E., Vargas M., Espinoza L., Lewis J. E., Deshratan A., Stanton A. C. (2014) Mentholated cigarettes are related with abnormal Brain-Derived Neurotrophic Factor levels among smokers living with HIV. J Alcohol Drug Depend, 2(5): 180-186. https://www.longdom.org/abstract/mentholated-cigarettes-are-related-with-abnormal-brainderived-neurotrophic-factor-levels-among-smokers-living-with-hiv-28756.html
[105] Lane S. (2016) Why Are Our Babies Dying?: Pregnancy, Birth, and Death in America, Chapter 4: Risk in social context. Routladge publication. https://www.taylorfrancis.com/books/babies-dying-sandra-lane/10.4324/9781315631103
[106] Mowry J. B., Spyker D. A., Cantilena Jr. L. R., McMillan N., Ford M. (2014) 2013 Annual Report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 31st Annual Report. Clin Toxicol 52: 1032–28. https://pubmed.ncbi.nlm.nih.gov/25559822/
[107] Manorenj S., Esic S. I. (2016) Camphor poisoning presenting as acute diffuse demyelination of brain. Int J Community Med Public Health 3(9):2686-2688.
[108] Simth A. G., Margous G. (1954) camphor poisoning: anatomical and pharmacologic study; report of a fatal case; experimental investigation of protective action of barbiturate. The American Journal of Pathology 30(5): 857-869.
https://pubmed.ncbi.nlm.nih.gov/13197534/
[109] Bazzano A. N., Var C., Grossman F., Oberhelman R. A. (2017) Use of camphor and essential oil balms for infants in Cambodia. J Trop Pediatr 63(1): 65–69. https://pubmed.ncbi.nlm.nih.gov/27370817/
[110] Petersen K. K., Rousing M. L., Jensen C., Jensen C., Arendt-Nielsen L., Gazerani P. (2011) Effect of local controlled heat on transdermal delivery of nicotine. Int J Physiol Pathophysiol Pharmacol 3:236–242.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175749/
[111] www.lego.com Age 1-2-LEGGO.COM US
[112] Stoppard M. (1991) Test Your Child. Dorling Kindersley Ltd. London.
[113] Fagard J., Jacquet A.Y. (1989) Onset of bimanual coordination and symmetry versus asymmetry of movement. Infant Behavior and Development 12(2): 229-235. https://psycnet.apa.org/record/1989-39518-001
[114] What is bilateral coordination and why is it important?
https://www.childsplaytherapycenter.com/bilateral-coordination-important/
[115] Abdelkarim, O., Ammar A., Chtourou H., Wagner M., Kenisel E., Hökelmann A., Böse K.(2017) Relationship between motor and cognitive learning abilities among primary school-aged children. Alexandria Journal of Medicine 53: 325-331.
https://www.tandfonline.com/doi/full/10.1016/j.ajme.2016.12.004
[116] The Association Between Childhood Motor and Cognitive Development (2018).
[117] Noble J. W., Eng J. J., Boyd L. A. (2014) Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: an fMRI study. Exp Brain Res 232(9): 2785–2795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486387/
[118] Hallman-Cooper J. L., Scott A. (2019) Cerebral Palsy. Stat Pearls [Internet]. Treasure Island (FL): Stat Pearls Publishing. https://www.ncbi.nlm.nih.gov/pubmed/30844174
[119] Holmefur M. (2009) The Assisting Hand Assessment: continued development, psychometric and longitudinal use. Department of women and child health, Karolinska Institute, Stockholm, Sweden. Reproprint, Stockholm.
[120] Singapore Primary Math Grade 1, Singapore Math Inc. Marshal Cavendish Education Pte Ltd.
https://www.singaporemath.com/Primary_Mathematics_CC_Ed_s/252.htm
[121] Reuland E. (2010) Imagination, planning, and working memory: The emergence of language. Current Anthropology 51(S1): S99-S110. https://www.journals.uchicago.edu/doi/10.1086/651260
[122] ‘Retzef’ plastic cards game, Ritram Didact Ltd. Israel. http://www.ritramdidact.co.il
רצף משחק רצפים עשוי פלסטיק מיוצר על ידי חברת ריטרם דידקט בע"מ, ישראל.
[123] Nikki Bush, a creative Parenting Expert (2017)
https://nikkibush.com/puzzle-age-ability-guideline/
[124] Awuah P. (2016) Ghana's rote-driven education backward. General News of Tuesday, 13 September 2016. Source: classfmonline.com
[125] NGO backs call to end rote method of teaching (2017) Source: Ghana Myjoyonline.com | george.nyavor@myjoyonline.com. Date: 24-04-2017
https://www.myjoyonline.com/news/2017/April-24th/ngo-backs-call-to-end-rote-method-of-teaching.php
[126] Best Practice in Labour and Delivery (2016) Sir Sabaratnam Arulkumaran (Ed.) Cambridge University Press, second edition.
[127] William P. Russell; Mark R. Russell. (2018) Anatomy, Head and Neck, Coronal Suture. StatPreals – NCBI Bookshelf: https://www.ncbi.nlm.nih.gov/books/NBK526011/
[128] Danielmeier C. Eichele T. Forstmann,B. U. Tittgemeyer M. and Ullsperger M. (2011) Posterior Medial Frontal Cortex Activity Predicts Post-Error Adaptations in Task-Related Visual and Motor Areas, J Neurosci. 31(5): 1780–1789.
https://pubmed.ncbi.nlm.nih.gov/21289188/
[129] Colosio M. Shestakova, A. . Nikulin V. V. Blagovechtchenski E. and Klucharev V. (2017) Neural Mechanisms of Cognitive Dissonance (Revised): An EEG Study. J Neurosci. 37(20): 5074–5083. https://pubmed.ncbi.nlm.nih.gov/28438968/
[130] Preston A. (2007) How does short-term memory work in relation to long-term memory? Are short-term daily memories somehow transferred to long-term storage while we sleep? . Scientific American (September) https://www.scientificamerican.com/article/experts-short-term-memory-to-long-term/
[131] Bathing your baby safely. https://www.babycentre.co.uk/a40/bathing-your-baby-safely
[132] Nezwek T. A. and Varacallo M. (2019) Physiology, Connective Tissue. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK542226/
[133] Lipsett B. J. and Steanson K. (2020) Anatomy, Head and Neck, Fontanelles. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK542197/
[134] Bronfin D. R. (2001) Misshapen Heads in Babies: Position or Pathology? Ochsner J. 3(4): 191–199.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116745/
[135] Mpemba E. B. and Osborne D. G. (1979). The Mpemba effect. Physics Education. 14 (7): 410–412.
https://www.scribd.com/document/353322353/Mpemba-Effect
[136] Lee S. H., Jin S. H., An J. (2019) The difference in cortical activation pattern for complex motor skills: A functional near- infrared spectroscopy study. Scientific Reports volume 9, Article number: 14066.
https://www.nature.com/articles/s41598-019-50644-9
[137] Hasson U., Chen,J. and HoneyC. J. (2015) Hierarchical process memory: memory as an integral component of information processing.Trends Cogn. Sci. 19(6): 304–313. https://pubmed.ncbi.nlm.nih.gov/25980649/
[138] Medler D. A. (1998). A Brief History of Connectionism. Neural Computing Surveys. 1: 61–101.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.4229&rep=rep1&type=pdf
[139] Papp, S., Tombor L., Kakuszi, B., Balogh L., Réthelyi J. M., Bitter I. and Czobor P. (2020) Impaired early information processing in adult ADHD: a high-density ERP study BMC Psychiatry, 20:292. https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-020-02706-w
[140] Ami O., Maran J. C., Gabor P., Whitacre E. B., Musset D., Dubray C., Mage G., Boyer L. (2019) Three-dimensional magnetic resonance imaging of fetal head molding and brain shape changes during the second stage of labor. PLoS One. 2019; 14(5): e0215721. https://pubmed.ncbi.nlm.nih.gov/31091263/
[141] World Health Organization, Child growth standard https://www.who.int/childgrowth/standards/second_set/hc_for_age_field/en/
[142] Jain V., Irfan A. and Vanikar G. K. (2018) Program to Improve Private Early Education (PIPE): a case study of a systems approach for scaling quality early education solutions. Annals of The New York Academy of Sciences. https://doi.org/10.1111/nyas.13695
References.
[1] Education Ministry to investigate ‘poor’ 2018 WASSCE results for Math and English, https://www.ghanaweb.com/GhanaHomePage/NewsArchive/Education-Ministry-to-investigate-poor-2018-WASSCE-results-for-Maths-English-669864
[2] WASSCE 2018: Candidates performed poorly in English and Math. https://www.ghanaweb.com/GhanaHomePage/NewsArchive/WASSCE-2018-Candidates-performed-poorly-in-English-Maths-668611
[3] Ntiakoh-Ayipah D. A. (2015) Prevalence of Attention Deficit Hyperactivity Disorder Among Public Basic School Pupils in The Asante-Akyem North District Ashanti Region, Ghana, a thesis submitted to the department of community health, Kwame Nkrumah University of Science and Technology, Ghana. http://ir.knust.edu.gh/bitstream/123456789/8546/1/NTIAKOH%20FINAL%20THESIS.pdf
143] Conceptual understanding in: Adding + It Up Helpming Children Learn Mathematics (2001) Kilpatrick J., Swafford J. and Bradford F. (Eds.) Center for Education Division of Behavioral and Social Sciences and Education, National Research Council.
https://www.nap.edu/read/9822/chapter/6#116
[144] Brain Balance Achievement Center. https://blog.brainbalancecenters.com/normal-attention-span-expectations-by-age
[145] Matlin M. (2009). Cognition. Hoboken, NJ: John Wiley & Sons, Inc. p. 4.
https://www.wiley.com/en-us/Cognition%2C+10th+Edition-p-9781119491712
[146] Krishnagopal D. (2015) Functional Anatomy of the Brain in The Biology of Thought, A Neuronal Mechanism in the Generation of Thought-A new Moleculsr Model. Academic press.
https://www.elsevier.com/books/the-biology-of-thought/dharani/978-0-12-800900-0
[147] Claus C. H. and Alexandros G. (2020) ‘Hierarchy’ in the organization of brain networks, Philos Trans R Soc Lond B Biol Sci. 13; 375(1796). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061955/
[148] Schienlea A., Köchela A., EbnerbF., Reishoferb G., Schäfera A. (2010) Neural correlates of intolerance of uncertainty, Neuroscience Letters 479: 272–276. https://www.researchgate.net/publication/44694984_Neural_correlates_of_intolerance_of_uncertainty
[149] Mesulam M. M. (1998) From sensation to cognition, Brain, 121: 1013–1052. https://pubmed.ncbi.nlm.nih.gov/9648540/
{150] Oldham S., Fornito A. (2019) The development of brain network hubs. Developmental Cognitive Neuroscience, Volume 36, 100607. https://www.sciencedirect.com/science/article/pii/S1878929318301397
[151] U.S. Library of Medicine. https://medlineplus.gov/ency/imagepages/19244.htm
[152] Kikuchi M., Takahashi T., Hirosawa T., Oboshi Y., Yoshikawa E., Minabe Y., Ouchi Y. (2017) The Lateral Occipito-temporal Cortex Is Involved in the Mental Manipulation of Body Part Imagery. Front Hum Neurosci. 11:181. https://pubmed.ncbi.nlm.nih.gov/28443011/
[153] Samardzic J., Jadzic D., Hencic, B., Jancic J., Strac. D. S. (2017) Introductory Chapter: GABA/Glutamate Balance: A Key for Normal Brain Functioning. INTECH. http://dx.doi.org/10.5772/intechopen.74023
[154] Longden T. A., Hill-Eubanks D. C., Nelson T. M. (2016) Ion channel networks in the control of cerebral blood flow. J. Cereb Blood Metab. 36(3): 492–512. https://pubmed.ncbi.nlm.nih.gov/26661232/
[155] Zlotnik A., Gurevich B., Artru A. A., Gruenbaum S. E ,Dubilet M., Leibowitz A., Shaked G., Ohayon S., Shapira Y., Teichberg V. I., (2010) The Effect of Hyperthermia on Blood Glutamate Levels. Anesth. Analg. 111(6):1497-1504. https://pubmed.ncbi.nlm.nih.gov/21048094/
[156] Zauner A. , Bullock R., Kuta A. J., Woodward J. , Young H. F. (1996) Glutamate Release and Cerebral Blood Flow After Severe Human Head Injury. Acta Neurochir Suppl 67:40-4. https://pubmed.ncbi.nlm.nih.gov/8870800/
[157] Amberg G. C., Navedo M. F. (2013) Calcium dynamics in vascular smooth muscle. Microcirculation, 20(4): 281–289. https://pubmed.ncbi.nlm.nih.gov/23384444/
[158] Lodish H., Berk A., Zipursky S L., Matsudaira P., Baltimore D., Darnell J. (2000) Overview of Neuron Structure and Function in Molecular Cell Biology New York: W. H. Freeman, 4th edition. https://www.ncbi.nlm.nih.gov/books/NBK21535/
[159] Boulant J. A. (2000) Role of the Preoptic-Anterior Hypothalamus in Thermoregulation and Fever. Clinical Infectious Diseases, 31:(supplement_5) S157–S161. https://academic.oup.com/cid/article/31/Supplement_5/S157/332640
[160] Kennedy, M. B. (2013) Synaptic Signaling in Learning and Memory. Cold Spring Harb Perspect Biol. 8(2): a016824.
https://pubmed.ncbi.nlm.nih.gov/24379319/
[161] Hand Dominance – Under 5’s (Pdf), Children’s Community Occupational Therapy, Oxford Health, NHS Foundation Trust.
https://www2.oxfordshire.gov.uk/cms/sites/default/files/folders/documents/childreneducationandfamilies/educationandlearning/specialeducationalneeds/SEND/HandDominance.pdf
[162] Verdine B. N., Golinkoff R. M., Hirsh-Pasek K., Nora S. Newcombe N. S., Filipowicz A. T., Chang A. (2014) Deconstructing Building Blocks: Preschoolers' Spatial Assembly Performance Relates to Early Mathematics Skills. Child Dev. 85(3): 1062–1076.
https://pubmed.ncbi.nlm.nih.gov/24112041/
[163] Occupational Therapy – Kids health information, Hand preference (2005) , Department of Occupational Therapy, Royal Children’s Hospital, Melbourne. https://www.rch.org.au/uploadedFiles/Main/Content/ot/InfoSheet_B.pdf
[164] Developmental Skills for Ages 2 to 3 Years (2010). University of Minnesota. Amplatz Children's hospital.
Pediatric Rehabilitation Service. https://www.fairview.org/fv/groups/internet/documents/web_content/developmen_201009262104505.pdf
[165] Ausubel, D. P. (1968) Educational Psychology, A Cognitive View. New-York, Halt Rinehart and Winston.
[166] Fanari R., Meloni C., Massidda D. (2019) Visual and Spatial Working Memory Abilities Predict Early Math Skills: A Longitudinal Study. Front. Psychol., 06 November. https://doi.org/10.3389/fpsyg.2019.02460
[167] Rakic P. (1992) The development and the shaping of the brain in: Discovery of the Brain (Ed.) Ackerman S. Washington (DC): National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK234146/
[168] Letchuman V. and Donohoe C. (2020) Neuroanatomy, Superior Sagittal Sinus, NCBI Bookshelf, StatPearls Publishing LLC.
https://www.ncbi.nlm.nih.gov/books/NBK546615/
[169] Gray H. F. R. S. and Warren H. L. (1918) Anatomy of the Human Body Page 654. Lea& Febiger, Philadelphia and Ney York.
https://archive.org/stream/anatomyofhumanbo1918gray#page/654/mode/2up
[170] Pichoff B. E., Schydlower M., Stephenson S. R. (1994) Children at risk for accidental burns from hot tap water. Tex. Med. 90(11):54-8. National Library of Medicine. National Center for Biotechnological Information, USA https://pubmed.ncbi.nlm.nih.gov/7997963/
[171] Loo L. Y.,Haider S., Lim PY. Y., Jeffery S. (2018) Predictor of the depth of burn injuries: A time-temperature relationship. International Journal of Medical Science and Clinical Invention 5(11): 4119-4128.
[172] Director, Emergency Department of Perth Childrens Hospital (2021) Poisoning - Salicylate. Government of western Australia, Child and Adolescence Health Service. https://pch.health.wa.gov.au/For-health-professionals/Emergency-Department-Guidelines/Poisoning-Salicylate
[173] Fletcher P. (2021) Hospital Medicine, Salicylate toxicity. Cancer Therapy Advisor New York USA. https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/hospital-medicine/salicylate-toxicity/
[174] Heng M. C. (1987) Local necrosis and interstitial nephritis due to topical methyl salicylate and menthol. Cutis. 39(5):442-4.
https://pubmed.ncbi.nlm.nih.gov/3556044/
[175] Brubacher J. R. and Hoffman R. S. (1996) Salicylism from topical salicylates: review of the literature. J Toxicol Clin Toxicol. 34(4):431-6. https://pubmed.ncbi.nlm.nih.gov/8699558/
[176] Ryan M. and Kennedy K. A. (2009) Neurotoxic Effects of Pharmaceutical Agents V: Miscellaneous Agents in: (Editor Dobbs M.R.) CLINICAL NEUROTOXICOLOGY: SYNDROMES, SUBSTANCES, ENVIRONMENTS, chapter 34: 393-4. Saunders, an imprint of Elsevier Inc. https://epdf.pub/clinical-neurotoxicology-syndromes-substances-environments.html
[177] Dasgupta A. and Wahed A. (20140) Clinical Chemistry, Immunology and Laboratory Quality Control, A Comprehensive Review for Board Preparation, Certification and Clinical Practice (chapter 19.2). ELSEVIER, San Diego USA.
https://www.sciencedirect.com/science/article/pii/B978012407821500019X
Pictures:
[p1] https://commons.wikimedia.org/wiki/File:Human_anterior_fontanelle_1_month_dscn1449.jpg
[p2] https://www.123rf.com/photo_116524003_man-seen-from-the-side-brain-face-x-ray-view-of-arteries-and-veins-spine-and-rib-cage-human-body-ana.html
[p3] Bronfin D. R. (2001) Misshapen Heads in Babies: Position or Pathology? Ochsner J. 3(4): 191–199. http://www.ochsnerjournal.org/content/3/4/191
[p4] Memmler R. L., Cohen B. J. and Wood D. L. (1992) Structure and Function of the Human Body. J. B. Lippincott Company
[p5] https://en.wikipedia.org/wiki/Pelvis
[p6] https://med.stanford.edu/newborns/professional-education/photo-gallery/head.html
[p7] https://www.google.com/search?q=source%3A+Pixabay+-+marimari1101&oq=source%3A+Pixabay+- +marimari1101&aqs=chrome..69i57j69i58.2299j0j15&sourceid=chrome&ie=UTF-8
[p8] https://pixabay.com/images/search/toddler%20playing/?pagi=36
[p9] https://www.google.com/search?sxsrf=ALeKk03wTK8OdLI1iiLu6bewRYi99gJWbQ:1604066359424&source=univ&tbm=isch&q=nuvita+infrared+thermometer+pictures&sa=X&ved=2ahUKEwiI_rHsvNzsAhVOUMAKHbUFBUwQ7Al6BAgDEB4&biw=1280&bih=610#imgrc=VV719I5k7ArDxM
[p10] Wagstyl K., Larocque S., Cucurull G., Lepage . Cohen J. P., S., Palomero-Gallagher N., Lewis L. B., Funck T., Spitzer H., Dickscheid T., Fletcher P. C., Romero A., Zilles K., Amunts K., Bengio Y., Evans A. C. (2020) BigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor cortices. BioRxiv, The preprint server for biology, Cold Spring Harbor Laboratory. https://www.biorxiv.org/content/10.1101/580597v3.full
[p11] Directions and Planes of Section. https://faculty.washington.edu/chudler/slice.html
[p12] Elston G. N. and Fujita I. (2014) Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat. 8: 7. https://www.frontiersin.org/articles/10.3389/fnana.2014.00078/full
[p13] Fitzgerald, M.J., Gruener, G., and Mtui, E. (2012) Clincal neuroanatomy and neuroscience, 6th edition pp. 300-303.
[p14] Si-Tse J., Chiung-Ya C., Chia-Wen L., Chiung-Ying C., Yi-Ping H. (2011) Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. The Journal of Cell Biology 193(4):769-84.
[p15] https://biologydictionary.net/fontanelle/